
informatics.nic.inJuly 2023 33

Technology Update

Sunil Kumar A R
Technical Director
ar.sunilkumar@nic.in

Microservices enable developers to develop
applications that provide consistent user
experiences across a range of platforms

like web, mobile, IoT, wearable and fitness track-
ers. Microservices are autonomous by allowing
code and state to be independently developed,
versioned, deployed, and scaled. The popularity
of microservices is that they can solve many cur-
rent IT challenges such as increasing speed, quick
deployment, scalability of applications and rapid
test processes.

While identifying and designing microservices,
it is highly essential to ensure that the services are
as small as possible so that each microservice can
be Continuously Integrated (CI) and Continuously
Delivered (CD) for Deployment. The proper
understanding of microservices is necessary for
planning, documentation and testing in order to
achieve the desired results.

REST Vs Messaging for
Microservices

A microservices architecture is a well-
established approach to build complex systems
composed of loosely coupled modules. It
has gained significant traction as one of the
most prominent software architecture trends
in recent years. The concept behind it is
surprisingly straightforward: break down a large,
interconnected system into multiple small,
lightweight modules, which simplifies software
management.

However, a crucial question arises once the

Edited by SANGEETHA MANJUNATH

REST vs. Messaging for
Microservices
Discover how to choose the right
communication style for Microservices

 Types of Communication
Microservices can communicate through

many different modes of communication, each
targeting a different use case. These types of
communications can be primarily classified in
two dimensions. The first dimension defines if
the communication protocol is synchronous or
asynchronous. The second dimension defines
if the communication has a single receiver or
multiple receivers. Refer to Table 11.1 and 11.2
to understand key difference between all these
dimensions.

The most common type of communication
between microservices is single-receiver
communication with a synchronous protocol
like HTTP/HTTPS when invoking a REST API.
Microservices typically use messaging protocols
for asynchronous communication between
microservices. This asynchronous communication
may involve a single receiver or multiple receivers
depending on the application’s needs.

Representational State
Transfer

Representational State Transfer (REST) is a
popular architectural style for request and re-
sponse communication, and it can serve as a
good example for the synchronous communica-
tion type. This is based on the HTTP protocol, em-
bracing verbs such as GET, POST, PUT, DELETE, etc.
In this communication pattern, the caller waits for
a response from the server.

REST is the most commonly used architectur-
al style for communication between services, but
heavy reliance on this type of communication has
some negative consequences when it comes to
Microservices Architecture (MSA). The disadvan-
tages include: 1. Multiple round trips (latency), 2.
Blocking and Tight Coupling.

Asynchronous Messaging
Messaging is widely used in a microservices ar-

chitecture, which follows the asynchronous pro-
tocol. In this pattern, a service sends a message

Two common protocols
used in microservices are
HTTP request/response with
resource APIs and lightweight
asynchronous messaging
when communicating updates
across several microservices.
This way the small, lightweight
modules in MSA architecture
can achieve the business
domain process. MSA is the
established pattern which can
make software management
easier with the agile
development, fast delivery,
highly scalable and maintain
high availability.

Technology Update

monolithic application is divided into these
smaller modules — how should they be effectively
interconnected? While there isn’t a definitive
answer to this question, several approaches can
be considered based on the specific application

and use case. Two common protocols used in
microservices are HTTP request/response with
resource APIs and lightweight asynchronous
messaging when communicating updates across
several microservices. Let’s explore these
protocols.

Technology Update

without waiting for a response, and one or more
services process the message asynchronously.
Asynchronous messaging provides many benefits
but also brings challenges such as idempotency,
message ordering, poison message handling, and
complexity of message broker, which must be
highly available. It is important to note the dif-
ference between asynchronous I/O and the asyn-
chronous protocol.

Asynchronous I/O means that the calling
thread is not blocked while the I/O operations
are executed. This is an implementation detail in
terms of the software design. It also means that
the sender does not need to wait for a response.

Asynchronous messaging has matured into a
number of messaging patterns. These patterns
apply to scenarios when several parts of a distrib-
uted system must communicate with one another
in a dependable and scalable way. Let’s take a

Fig 11.2

Fig 11.3

Rest API-based Communication Messaging-based communication

CLIENT

MICROSERVICES

Services

Services

Services

Services

CDN Static
Content Management

Service
Discovery

Remote
Service

API
Gateway

Identity
Provider

Fig 11.1 Architecture of Microservices

informatics.nic.in34 July 2023

API Gateway
REST API

REST API

REST API

REST API

Service A Service B Service C

Client A Client A

Database Database Database

look at some of these patterns.

Pub/Sub Pattern
 The pub/sub pattern implies that a publish-

er sends a message to a channel on a message
broker. One or more subscribers subscribe to the
channel and receive messages from the channel
in an asynchronous manner. This pattern is useful
when a microservice needs to broadcast informa-
tion to a significant number of consumers.

Advantages

• Decouples Publishers and Subscribers

• Increases Scalability

• Improves Responsiveness

• Separation of Concerns
Disadvantages

• High Semantic Coupling

• Difficult to Gauge the Health

• Becomes a Bottleneck for scaling

Queue-Based Pattern
 In the queue-based pattern, a sender posts a

message to a queue containing the data required
by the receiver. The queue acts as a buffer, storing
the message until it is retrieved by the receiver.
The receiver retrieves messages from the queue
and processes them at its own pace.

This pattern is useful for any application that
uses services that are subject to overloading.

Advantages

• Maximize Scalability

• Maximize Availability
Disadvantages

• No Longer Available after receipt

• Operational Complexity

Producer

Message

Message

Consumer

Service
A

Service
B

Message
Broker

informatics.nic.inJuly 2023 35

Technology Update

Sunil Kumar A R
Technical Director
NIC Centre of Excellence on Microservices
A-Block, 3rd Floor, Kendriya Bhavan, CSEZ P.O, Kochi
Kerala - 682037
Email: ar.sunilkumar@nic.in, Phone: 0484-2423769

Contact for more details

Keys to Streamlined
Messaging Infrastructure

Asynchronous communication is usually man-
aged through a message broker. There are some
factors to consider when choosing the right mes-
saging infrastructure:

• Scalability – ability to scale automatically
when there is a load surge on message broker

• Data persistency – ability to recover messages
in case of reboot or failure

• Consumer capability – whether the broker can
manage one-to-one and/or one-to-many consumers

• Monitoring – whether monitoring capabilities
are available

• Push and pull queue – ability to handle push
and pull delivery by message queues

• Security – proper authentication and authori-
zation for messaging queues and topics

• Automatic failover – ability to connect to a
failover broker automatically when one broker
fails without impacting publisher / consumer Fig 11.5 Messaging patterns: Queue-Based Pattern

CLIENT

MICROSERVICES

Services

Services

Services

Services

CDN Static
Content Management

Service
Discovery

Remote
Service

API
Gateway

Identity
Provider

Communication
Pattern

Protocols Coupling Failure Isolation

Synchronous The client sends a
request and waits
for a response
from the server.

HTTP/
HTTPS

The client code can
only continue its
task further when it
receives the server
response.

It requires the
downstream server
to be available or
the request fails.

Asynchronous Communication is
not in sync, which
means it does not
happen in real
time.

AMQP,
MQTT

In the context of
distributed messaging,
coupling implies that
request processing will
occur at an arbitrary
point in time

If the consumer fails,
the sender can still
send messages. The
messages will be
picked up when the
consumer recovers.

Communication Pattern Use Case

Single
Receiver

It implies that there is point-to-point
communication that delivers a mes-
sage to exactly one consumer that is
reading from the channel, and that
the message is processed only once.

It is well-suited for sending asynchronous
commands from one microservice to
another.

Multiple
Receivers

Communication from the sender is
available to multiple receivers.

The publish/subscribe mechanism is
where a publisher publishes a message
to a channel and the channel can be sub-
scribed by multiple subscribers/receivers
to receive the message asynchronously.

Synchronous Vs. Asynchronous Communication

Communication via Single Vs. Multiple Receivers

What are the various concerns with respect to the first dimension: synchronous or asynchronous
are tabled below.

With respect to the communication receiver’s instances the concerns related are tabled below.

Table 11.2

Table 11.1

Conclusion
Microservices are becoming the de facto

approach for designing scalable and resilient
systems. It cannot be defined discretely the
best and suitable approach for communications
among the microservices.

Restful APIs provide a request-response
model for communication between services,
whereas asynchronous messaging offers a more
scalable producer-consumer relationship among
different services. Both messaging and REST
APIs can be utilized for communication between
microservices.

Messaging architectures, in particular,
are highly beneficial for enhancing agility
and facilitating rapid development. They are
commonly employed among the modern
applications that employ microservices or any
application featuring decoupled or distributed
components.

When selecting the appropriate communication
style for microservices, it is crucial to ensure a
harmonious alignment between the requirements
of the consumer and one or more communication
types. This alignment guarantees the provision of
a robust interface for the services.

Service
B

Service
A

Service
C

Message
Broker

Subscriber

Subscriber

Publisher

Service
B

Message QueueService
A

ConsumerProducer

M4 M3 M2 M1

Fig 11.4 Messaging patterns: Pub/Sub Pattern

