
Technology Update

36 | informatics.nic.in | July 2016

Introduction of oAuth
2.0 based Single Sign-On
authentication mechanism in
MyGov has enabled better user
experience while accessing
its various sites and Apps.
Now the citizens can engage
in seamless participatory
activities without multiple
time signing in.

yGov is one of the

most innovative

public consultation

platforms for deriv-

ing various policies and planning in

government. This online platform

has evolved tremendously since its

succesful inception two years ago

featuring various kinds of citizen

engagement components for better

governance. A key highlight of the

core technology used in MyGov

remains light yet robust where-

as various sub-domains viz. Blogs,

Newsletters, Volunteering, Survey,

SwachhBharat, Innovation, Trans-

forming India and SmartNet besides

its mobile Apps.

It is important to provide the user
a simple and seamless experience
while traversing between MyGov
and its various sites. To avoid mul-
tiple times signing in by users to
access various sites and Apps of
MyGov and thus achieve seamless
citizen participation/ engagement
activities in the platform, enable-
ment of oAuth 2.0 based Single
Sign-On (SSO) authentication mech-
anism has been introduced, which is
a standard protocol used by modern
social media platforms. With this
technology enhancement, a citizen
can seamlessly engage in the activ-
ities by signing in only once.

Edited by
MOHAN DAS VISWAM

oAuth Based Single Sign-On
Enabling Seamless Access to MyGov, Associated
Sites And Apps

oAUTH ROLES:
1. Resource Owner: User
The resource owner is the user who
authorizes an application to access
their account. The application’s access
to the user’s account is limited to the
“scope” of the authorization granted
(e.g. read or write access).

2. Client: Application

The client is the application that wants
to access the user’s account. Before it
may do so, it must be authorized by
the user, and the authorization must
be validated by the API.

3. Resource and Authorization
Server: API

The resource server hosts the protect-
ed user accounts, and the authoriza-
tion server verifies the identity of the
user then issues access tokens to the
application. From an application de-
veloper’s point of view, a service’s API
fulfils both the resource and authoriza-
tion server roles. Here it is referred to
both of these roles combined, as the
Service or API.

RAVI KUMAR
Scientist-B

ravi.k@nic.in

D.P. MISRA
Scientist-D

dpmisra@nic.in

NARENDER KUMAR
JAIN
Scientist-B

nk.jain@nic.in

ALKA MISHRA
Sr. Technical Director

amishra@nic.in

M

Technology Update

July 2016 | informatics.nic.in | 37

4. Mechanisms to use MyGov
oAuth 2.0 by any client
application:

Above diagram depicts the abstract
protocol flow of how they generally
interact with each other:

APPLICATION
REGISTRATION
The application wants to use MyGov
oAuth 2.0 will have to be registered
with https://auth.mygov.in to get the
Client ID and Client Secret Key.

CLIENT ID AND CLIENT
SECRET KEY
Once your application is registered,
the service will issue “client creden-
tials” in the form of a client identi-
fier and a client secret. The Client
ID is a publicly exposed string that
is used by the service API to identify
the application, and is also used to
build authorization URLs that are
presented to users. The Client Secret
is used to authenticate the identity

of the application to the service API
when the application requests to ac-
cess a user’s account, and must be
kept private between the application
and the API.

AUTHORIZATION GRANT
In the Abstract Protocol Flow above,
the first four steps cover obtaining an
authorization grant and access token.
The authorization grant type depends
on the method used by the application
to request authorization, and the grant
types supported by the API. oAuth 2.0
defines four grant types (Authoriza-
tion Code, Implicit, Resource Owner
Password Credentials, Client Creden-
tials) each of which is useful in differ-
ent cases:

GRANT TYPE:
AUTHORIZATION CODE
The authorization code grant type
used with server-side Applications is
the most commonly used because it

is optimized for server-side applica-
tions, where source code is not pub-
licly exposed, and Client Secret con-
fidentiality can be maintained. This is
a redirection-based flow, which means
that the application must be capable
of interacting with the user-agent (i.e.
the user’s web browser) and receiving
API authorization codes that are rout-
ed through the user-agent.

Once the application is authorized! It
may use the token to access the user’s
account via the service API. The ser-
vice call should be a POST request
with Authorisation Headers having
the access_token.

GRANT TYPE: IMPLICIT
The implicit grant type is basically
used with Mobile Apps or Web Ap-
plications (applications that run on the
user’s device). The implicit grant type
is also a redirection-based flow but the
access token is given to the user-agent
to forward to the application, so it
may be exposed to the user and other
applications on the user’s device.

GRANT TYPE: RESOURCE
OWNER PASSWORD
CREDENTIALS
With the resource owner password
credentials grant type is used with
trusted Applications such as those
owned by the service itself, the user
provides their username and pass-
word to the application, which uses
the credentials to obtain an access
token from the service. This grant
type should only be enabled on the
authorization server. It should only
be used if the application is trusted
by the user.

Abstract Protocol Flow diagram

Technology Update

38 | informatics.nic.in | July 2016

GRANT TYPE: CLIENT
CREDENTIALS
With the Client Credentials grant type

used with Applications API access i.e.

the user provides their client id and

client secret to the application, which

uses the credentials to obtain an ac-

cess token from the service. The ap-

plication requests an access token by

sending its credentials, its client ID

and client secret, to the authorization

server.

oAUTH SECURITY MODELS

1. Client Impersonation

A malicious client can impersonate

another client and obtain access to

protected resources if the imperson-

ated client fails to, or is unable to,

keep its client credentials confiden-

tial.

2. Phishing Attacks

Wide deployment of this and similar
protocols may cause end-users to be-
come inured to the practice of being
redirected to websites where they
are asked to enter their passwords.
If end-users are not careful to verify
the authenticity of these websites be-
fore entering their credentials, it will
be possible for attackers to exploit
this practice to steal resource owners’
passwords

3. Cross-Site Request Forgery

Cross-site request forgery (CSRF) is
an exploit in which an attacker causes
the user-agent of a victim end-user to
follow a malicious URI to a trusting
server.

4. Click jacking

In a click jacking attack, an attacker
registers a legitimate client and then

constructs a malicious site in which

it loads the authorization server’s au-

thorization endpoint web page in a

transparent iframe overlaid on top

of a set of dummy buttons, which are

carefully constructed to be placed di-

rectly under important buttons on the

authorization page. When an end-user

clicks a misleading visible button, the

end-user is actually clicking an invisi-

ble button on the authorization page

(such as an “Authorize” button). This

allows an attacker to trick a resource

owner into granting its client access

without the end-user’s knowledge.

For further information, please contact:
ALKA MISHRA
Sr. Technical Director
MyGov, Platform for Citizen Engagement
379, 3rd Floor, NIC, CGO Complex
Lodhi Road, New Delhi 110 003
Email: amishra@nic.in
Phone: 011-24368854

Authorization Code Grant Flow diagram

