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of information gathering from news, social

media, and other documents to understand
changing human sentiments, take corrective
actions for effective policy implementation
and intercept evolving dynamics of public
engagement. It is founded on the bedrock of
Natural Language Processing (NLP) algorithms,
which helps machines to understand and process
human languages. In this article, the concepts of
Text Analytics and NLP along with their use case
will be briefly discussed.
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TextAnalysis has becomeanessential
part of information gathering from
news, social media, and other
documents to understand changing
human needs and take corrective
actions for effective policy making. It
is founded on the bedrock of Natural
Language Processing, which helps
machines to understand human
languages. From predicting results
with classifiers to generating texts
that can fool humans, these tools
have moved leaps and bounds. With
regional languages in the picture,
there are immense possibilities for
these services other than simple
transliteration and translation.

Technology Brief

NLP can be defined as the automatic
manipulation of natural language, like speech and
text by software. It helps machines in translation,
search, and predictive text typing. NLP problems
are as challenging as human language and filled
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with ambiguities which make it incredibly difficult
to write software that can accurately determine
the intended meaning of text or voice input.
Several NLP tasks break down human text in a
way that helps the computer make sense of what
it is ingesting. Some of these tasks are:

Part of Speech (PoS) tagging: It is the process
of determining the part of speech of a particular
piece of text based on its use and context. For
example, it identifies ‘make’ as a verb in ‘I can
make a paper plane, and as a noun in ‘What make
of car do you own?’

Word Sense Disambiguation (WSD): WSD helps
in the selection of correct meaning of a word
from multiple definitions through a process
of semantic analysis which determines word
meaning that makes the most sense in the given
context. For example, it can distinguish the
difference in the word ‘bank’ in ‘They bank on
him to save the match’ (depend - verb) compared
to ‘River bank is a beautiful place to do morning
exercise’ (place - noun).

Named Entity Recognition (NER): NER identifies
words or phrases as useful entities. It helps to
distinguish names of entities such as names of
people, places, and things. It can be customised
to identify other features of importance in text
such as age, salaries and other data sets.

Sentiment Analysis (SA): SA attempts to extract
subjective qualities such as attitudes, opinions,
emotions, beliefs, and perspective from the text.

Features

® Context extraction using Attention mechanism

e Data interpretation by Language Modelling
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e Customised Named Entity Extraction

Specifications

It is a known fact that machines do not
understand text. They converse in the language
of zeros and ones. For which, one needs to
represent required information in encoded form.
It can be done with the help of encoding tools
such as Word2Vec and Bag of Words, which gives
a probability to a particular set of words so that
they can be represented in an array form and
convey information such as frequency of their
occurrence in the corpus. This is known as Term
Frequency-Inverse Document Frequency (TF-IDF).
These vectors are further used in text generation
and machine translations. They are compatible
with tensor maths which can be executed as
matrix multiplications in tensor cores of a GPU in
highly parallel fashion.

There is also a huge variety in document
composition and textual context, including
sources, format, language and grammar. Tackling
this variety requires a range of methodologies:

Text Pre-processing: Transformation  of
internal and external document formats (e.g.,
HTML, Word, PowerPoint, Excel, PDF text, PDF
image) into a standardised searchable format,
often require Optical Character Recognition (OCR)
tool to extract texts from scanned pdfs. For the
ability to process embedded tables within text,
COE has developed an OCR based tool for text
extraction from images and made them available
to Judiciary MACP cases and CBSE.

Natural Language Toolkit (NLTK): Most of the
time, we get unstructured, incorrectly formatted
data, for which we may need to format it in order
to make data ready for modelling purposes. NLTK
is a python library developed by NIC CoE-Al that
provides a number of tools for cleaning & making
the data ready for modelling purposes.

Text Annotation: TA helps us to identify,
tag and search in specific document sections
which are important for training the Al model.
For example, to use NER algorithms to detect
credentials of a petitioner or respondent such as
name, age, salary and dependents, one needs to
annotate a number of cases to train the Al model.
Several open source tools are available for doing
text annotations.

Language Modelling: LM helps to determine
the probability of a sequence of words in a text
such as phrases or sentences, noun and verb
groups together to form a relationship between
themselves and make the computer capable of
generating similar sentences.

Pattern recognition & Text Classification: To
discover and identify categories of information,
which are not easily defined with a dictionary
approach like NER, Pattern Recognition helps
to classify and categorise the text and help
predict similarity scores in predictions. For text
classification, we require tens of thousands of
text annotations.
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A Fig. 9.1: Motor accident claim petition
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A Fig. 9.2: Text translation from 11 Indian language to English and vice versa

Model Training: For training a classifier model,
a language model needs to be build, which
is trained on a large corpus of data such as
Wikipedia English in order to generate proper
English sentences and teach domain specific
lexicon for correct interpretation.

A language model attempts to learn the
structure of natural language through hierarchical
representations; thus, it contains both low-level
features (word representations) and high-level
features (semantic meaning). For example, After
training a language model, it can form proper
sentences and paragraphs like humans. It can be
seen in the phrase “Petition was Signed”, which is
a totally fictitious piece.

Application Areas

In case of Motor Accident Claim Petition
(MACP), over forty thousand case orders with
representation from all High Courts were
annotated in such a manner that the learning
model is not biased. The cases were classified
as accepted, partially accepted, partially
rejected, rejected and settled. Also, citations and
compensation were made available from case
orders. Since, Hindi case orders also formed a
sizable volume, the text translation was also
carried out before annotations to give equal
representation. (Refer Fig. 9.1)

In addition, NIC provides Matra Text Trans-
literation Services through Bharat APl in 11
regional languages. Moreover, Al Panini - Text
Translation based APl Services Model has been
deployed for translation from 11 Indian regional
languages to English and vice versa. (Refer Fig.
9.2) These eleven languages are Hindi, Bengali,
Gujarati, Marathi, Assamese, Kannada, Malayalam,
Marathi, Odia, Punjabi, Tamil and Telugu.
Similarly, Al Shruti provides Speech-to-Text and
Text-to-Speech API Services in English and Hindi.

Benefits of Text analytics

® Allows interpretation of messages

® Topic modelling from text documents

® Text summarisation

® Q & A interpretation from text documents
e Text generation for predictive typing

® Sentiments analysis
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