
informatics.nic.in October 202118

In Focus

Cyber
Security

ModSecurity

Leveraging Big Data and AI-ML for Security Analytics

Defense in Depth through Layered Security

Endpoint: The Start Point of Cyber Security

DevSecOps

Automated Vulnerability Analysis & Reporting Tool

Security Audit, Web shell, and OWASP-A9

Preventing Cyber Crisis

19

22

25

28

30

32

34

36

informatics.nic.inOctober 2021 19

In Focus

ModSecurity

ModSecurity is an open source, cross platform web application firewall

(WAF) engine for Apache, IIS and Nginx. It provides protection from a

range of attacks against web applications such as Cross Site Scripting

(XSS), SQL Injection, Cross Site Request Forgery, Local File Inclusion, Path

Traversal, Session Fixation, etc. and allows for HTTP traffic monitoring,

logging and real-time analysis. ModSecurity excels at virtual patching

contributed by its reliable blocking capabilities and the flexible rule

language that can be adapted to any need.

W ith the increasing threats and attacks on
web applications, organizations require a
more effective concept of web application

security. Web Application Firewall (WAF) is such
a concept that can be used to prevent various
threats and attacks on web applications. WAF has
the ability to filter packets, block malicious HTTP
requests, and also do logging. The open-source
WAFs are highly flexible and customizable. With
full access to the source code, Open source WAF
offers the freedom to WAF administrators, web
administrators and developers to apply rules as
per individual application and provides flexibility
to customize and extend the tool itself to fit as

Open Source Web Application
Firewall

per application requirements. ModSecurity is a
popular open source Web Application Firewall.

ModSecurity gives access to the HTTP traffic
stream in real time, along with the ability to
inspect it. It can be deployed in embedded mode
or in reverse proxy mode. ModSecurity excels at
virtual patching because of its reliable blocking
capabilities and the flexible rule language that
can be adapted to any need. ModSecurity works
with OWASP ModSecurity Core Rule Set (CRS),
CRS is a set of generic attack detection rules
for use with ModSecurity or compatible web
application firewalls. The CRS aims to protect
web applications from a wide range of attacks,
including the OWASP Top Ten, with a minimum
of false alerts. ModSecurity along with CRS
provides protection against many common attack

Ratnaboli Ghorai
Dinda
Scientist-G & HOG
(Application Security)
ratnaboli@gov.in

R. K. Raina
Sr. Technical Director
rk.raina@nic.in

Rajeev Kumar Yadav
Scientist-B
yadav.rajeev@nic.in

categories, including SQL Injection, Cross Site
Scripting, Cross Site Request Forgery, Local File
Inclusion, Open Redirect, Insufficient Session
Expiration, Path Traversal, etc.

Features/Functionalities of
ModSecurity

ModSecurity employs a variety of methods to
protect websites. Following is a list of the most
important usage scenarios for ModSecurity:

Real-time application security
monitoring and access control

At its core, ModSecurity gives us access to the
HTTP traffic stream in real time, along with the
ability to inspect it. This is enough for real-time
security monitoring. ModSecurity’s persistent

informatics.nic.inOctober 2021 19

informatics.nic.in October 202120

In Focus

ModSecurity

proxy web server and add ModSecurity to it, we
get a “proper” network web application firewall,
which we can use to protect any number of
web servers on the same network. This mode
gives us complete isolation from the systems
(e.g. web servers/applications and databases)
we are protecting. On the performance front, a
standalone ModSecurity installation will have
resources dedicated to it, which means that we
will be able to do more (i.e., have more complex
rules). The main disadvantage of this approach
is the new point of failure, which will need to be
addressed with a high-availability setup of two or
more reverse proxies.

Transaction Lifecycle
In ModSecurity, every transaction goes

through five steps, or phases. In each of the
phases, ModSecurity will do some work at the
beginning (e.g., parse data that has become
available), invoke the rules specified to work in
that phase, and perhaps do a thing or two after
the phase rules have finished.

Request headers
The request headers phase is the first entry

point for ModSecurity. The principal purpose
of this phase is to allow rule writers to assess
a request before the costly request body
processing is undertaken. Similarly, there is often
a need to influence how ModSecurity will process
a request body, and this phase is the place to do
it. For example, ModSecurity will not parse an XML
request body by default, but we can instruct it do
so by placing the appropriate rules into phase 1.

Request body
The request body phase is the main request

Web application hardening
One of important uses for ModSecurity

is attack surface reduction, in which we can
selectively narrow down the HTTP features we’re
willing to accept (e.g., request methods, request
headers, content types, etc.). ModSecurity can
assist users in enforcing many similar restrictions,
either directly or through collaboration with other
web server modules. For example, it’s possible to
fix many session management issues, as well as
cross site request forgery vulnerabilities.

Deployment Options
ModSecurity supports two deployment

options: embedded and reverse proxy
deployment. Users can pick the most appropriate
option based on their goals, requirements,
and situation. There are advantages and
disadvantages of both options:

Embedded
The embedded option is a great choice for

those who already have their architecture laid
out and don’t want to change it. Embedded
deployment is also the preferred option if
we need to protect hundreds of web servers.
In such situations, it is impractical to build a
separate proxy-based security layer. Embedded
ModSecurity not only does not introduce new
points of failure, but also it scales seamlessly
as the underlying web infrastructure scales. The
main challenge of embedded deployment is that
server resources are shared between the web
server and ModSecurity.

Reverse proxy
Reverse proxies are effectively HTTP routers,

designed to stand between web servers and
their clients. When we install a dedicated reverse

storage mechanism enables users to track
system elements over time and perform event
correlation. Users can block reliably, if they so
wish, because ModSecurity uses full request and
response buffering.

Virtual patching
Virtual patching is a concept that addresses

vulnerability mitigation in a separate layer, in
which you get to fix problems in applications
without having to touch the applications
themselves. Virtual patching is the quick
development and short-term implementation
of a security policy meant to prevent an exploit
from occurring. The resulting impact of virtual
patch is that, while the actual source code of
the application itself has not been modified,
the exploitation attempt does not succeed.
ModSecurity excels at virtual patching because of
its reliable blocking capabilities and the flexible
rule language that can be adapted to any need.
Virtual patching is, by far, the activity ModSecurity
offers that requires the least investment, is the
easiest to perform, and that most organizations
can benefit from straight away.

Full HTTP traffic logging
Web servers traditionally do very little when

it comes to logging for security purposes. They
log very little by default, and even with a lot of
tweaking we can’t get all the data that we need.
ModSecurity gives us the ability to log everything,
including raw transaction data, which is essential
for forensics. In addition, we get to choose
which transactions are logged, which parts of
a transaction are logged, and which parts are
sanitized. As a bonus, this type of detailed logging
is also helpful for application troubleshooting—
not just security.

informatics.nic.in October 202120

informatics.nic.inOctober 2021 21

In Focus

Post-Read-Request

URI Translation
ModSecurity Phase:1

Request Headers

ModSecurity Phase:2
Request Body

ModSecurity Phase:5
Logging

ModSecurity Phase:3
Response Headers

ModSecurity Phase:4
Response Body

Header Parsing Authentication

Fixups

Response

ModSecurity Transaction Phases

Logging

Wait

Cleanup

Authorization

MIME type checking

Access Control

For further information, please contact:
R. K. Raina
Sr. Technical Director
National Informatics Centre, A-Block
CGO Complex, Lodhi Road
New Delhi - 110003
Email: rk.raina@nic.in, Phone: 011-23405231

analysis phase and takes place immediately
after a complete request body has been received
and processed. The rules in this phase have all
the available request data at their disposal.

Response headers

The response headers phase takes place after
response headers become available, but before
a response body is read. The rules that need to
decide whether to inspect a response body run
in this phase.

Response body
The response body phase is the main

response analysis phase. By the time this phase
begins, the response body will have been read,
with all its data available for the rules to make
their decisions.

Logging
The logging phase is special in more ways

than one. First, it’s the only phase from which we
cannot block. By the time this phase runs, the
transaction will have finished, so there’s little
we can do but record the fact that it happened.
Rules in this phase are run to control how logging
is done.

Conclusion
ModSecurity is a very powerful and flexible

WAF. It prevents web applications against a
number of attacks such as SQL Injection, Cross
Site Scripting, Cross Site Request Forgery, Local
File Inclusion, Missing HTTP Only and Secure Flags
on Sensitive Cookies, Improper Access Control,
Sensitive Data Exposure and many more. Web

application administrators can use ModSecurity
as a defense against such web application
vulnerability exploits. It gives us freedom to
decide how to take advantage of the features
available in it. This flexibility is a core element of
ModSecurity’s identity, and complements its open
source structure. In fact, users can enjoy complete
access to its source code, which empowers them
to customize the tool to suit their unique needs.

informatics.nic.inOctober 2021 21

