
informatics.nic.in October 202440

Technology Update

Edited by MOHAN DAS VISWAM

As organizations increasingly adopt DevOps 
practices, Continuous Integration and 
Continuous Delivery (CI/CD) pipelines have 

become essential for streamlining the software 
development lifecycle. However, this fast-paced 
development environment is not without its risks. 
A secure CI/CD pipeline is critical to ensuring that 
the rapid deployment of code doesn’t expose 
your systems to vulnerabilities or malicious 
attacks. In this paper, we will explore the unique 
security risks inherent to CI/CD pipelines and 
offer strategies for mitigating them.

Understanding the CI/CD Pipeline
The CI/CD pipeline is a development methodol-

ogy designed to automate the process of integrat-
ing, testing, and deploying code. While it offers 
immense benefits, such as faster release cycles 
and higher-quality code, it also creates new at-
tack vectors that adversaries can exploit. The 
pipeline typically includes the following stages:

•	Code Repository: Code is stored in a version 
control system (e.g., Git). Each push or pull re-
quest can trigger automated actions in the pipe-
line.

•	Build Stage: The code is compiled into arti-
facts. This process may involve resolving depen-
dencies, packaging the application, and prepar-
ing for deployment.

•	Test Stage: Automated tests (e.g., unit, integra-
tion) are run to verify that the application func-
tions correctly. Failures at this stage can halt fur-
ther progression in the pipeline.

•	Deploy Stage: If the tests pass, the application 
is deployed to a staging or production environ-
ment for final validation and monitoring.

Jeevitha J.
Scientist - D
j.jeevitha@nic.in

Top Security Risks in CI/CD Pipelines
Insufficient Flow Control Mechanisms

Risk: Inadequate management of the flow be-
tween stages in the pipeline can allow attackers 
to manipulate the order or conditions under 
which code is tested and deployed. Without prop-
er sequencing, unauthorized actions may bypass 
critical security checks.

Mitigation:

•	Implement detailed policies that define the 
exact order of operations in the pipeline.

•	Use CI/CD tools that support flow control fea-
tures, ensuring that code must pass through pre-
defined security gates before proceeding.

Inadequate Identity and Access 
Management

Risk: Poorly managed identity and access con-
trols can expose sensitive environments. Attack-
ers could gain unauthorized access to the code-
base, modify deployment scripts, or introduce 
malicious code.

Mitigation:

•	Use role-based access control (RBAC) to limit 
access to specific pipeline actions.

•	Enforce multi-factor authentication (MFA) for 
accessing critical components of the pipeline.

•	Regularly audit user access permissions to en-
sure compliance with the principle of least priv-
ilege.

Dependency Chain Abuse
Risk: Modern software development relies 

heavily on third-party libraries and packages. If 
these dependencies are compromised, attack-
ers can inject malicious code into your project 
through seemingly legitimate updates.

Mitigation:

•	Regularly scan dependencies for known vul-
nerabilities using tools like Snyk or npm audit.

•	Pin dependencies to specific versions to pre-
vent automatic updates from introducing mali-
cious code.

•	Download packages only from trusted sources, 
and implement package integrity checks to en-
sure that they haven’t been tampered with.

Poisoned Pipeline Execution (PPE)
Risk: In a PPE attack, adversaries compromise 

the CI/CD pipeline itself, injecting malicious 

•	Production Stage: Once the application has 
successfully passed all previous stages, it is de-
ployed to the live production environment. The 
production stage is particularly sensitive, as any 
issues at this point directly affect end users. 
Continuous monitoring in production is crucial 
to ensure the application remains secure and 
performs as expected. Malicious actors may at-
tempt to exploit vulnerabilities in this stage to 
inject backdoors, steal data, or compromise the 
system’s integrity.

Each of these stages presents unique securi-
ty challenges, requiring organizations to enforce 
strict security controls throughout the process.

Addressing the Unique Challenges in DevOps

Securing CI/CD
Pipelines

CI/CD pipelines enable 
fast software delivery but 
come with security risks like 
weak flow control, IAM gaps, 
and dependency exploits. 
Mitigation includes role-based 
access control, multi-factor 
authentication, secure secrets 
management, and automated 
testing. Tools like Jenkins and 
GitLab CI/CD help enhance 
security. Best practices include 
isolating environments, using 
immutable infrastructure, 
and conducting regular 
audits. A real-world example 
of dependency confusion 
highlights the importance of 
securing the CI/CD process to 
protect against evolving threats.

Technology Update



informatics.nic.inOctober 2024 41

Technology Update

commands that are executed during the build or 
deployment process. This can result in unautho-
rized modifications to the codebase or even the 
insertion of backdoors into production systems.

Mitigation:

•	Segment the pipeline so that each stage has 
access only to the resources necessary for that 
step.

•	Use secure secrets management systems to 
store sensitive credentials.

•	Employ logging and monitoring to detect un-
usual activities within the pipeline, such as unex-
pected builds or unauthorized changes.

Pipeline-Based Access Control (PBAC) 
Weaknesses

Risk: Insufficient access controls can allow 
unauthorized code or configuration changes to 
pass through the pipeline stages without prop-
er vetting. A misconfigured pipeline can lead to 
untested or malicious code being deployed into 
production.

Mitigation:

•	Implement least privilege access for all users 
and services interacting with the pipeline.

•	Require manual code reviews and automated 
security testing before code can be merged or 
deployed.

•	Regularly audit and update the pipeline’s ac-
cess controls to account for new roles and re-
sponsibilities.

Tools and Technologies to Strength-
en CI/CD Security

To secure CI/CD pipelines, organizations 
should leverage industry-leading tools that offer 
built-in security features and robust integration 
with their existing workflows:

•	Jenkins: Jenkins integrates with security tools 

Fig 13.1

Fig 13.2

CI/CD Pipeline

Top five CI/CD Security Risks

like OWASP ZAP, allowing automated scanning for 
vulnerabilities within the pipeline.

•	GitLab CI/CD: Provides built-in security fea-
tures, such as dependency scanning and static 
application security testing (SAST), to detect vul-
nerabilities early in the development cycle.

•	AWS CodePipeline: Can be integrated with 
other AWS security services, such as AWS Secrets 
Manager, to ensure secure storage of credentials.

Best Practices for CI/CD Security
•	Automate Security Checks: Automated security 
testing should be part of the pipeline from the 
earliest stages, with tools running continuous 
vulnerability scans and static analysis on code. 
This ensures that security is baked into the pro-
cess rather than being an afterthought.

•	Isolate Environments: Keep development, test-
ing, and production environments isolated from 
each other. Artifacts should be signed and ver-

ified before promotion between environments, 
ensuring that compromised code cannot reach 
production without detection.

•	Immutable Infrastructure: Use containers or 
virtual machines that are destroyed after each 
build. This ensures that a compromised environ-
ment cannot be used repeatedly for attacks, lim-
iting the persistence of malicious actors.

•	Regular Security Audits: Conduct periodic au-
dits of the pipeline’s security mechanisms. This 
includes verifying that dependencies are up-to-
date, access controls are appropriately config-
ured, and all changes to the pipeline are logged 
and monitored.

Real-World Example: Dependency 
Confusion Attack

In a high-profile example, attackers used a 
dependency confusion vulnerability to inject 
malicious code into companies like Amazon and 
Slack. By exploiting the fact that dependency 
managers prioritize public repositories over in-
ternal ones, attackers were able to push harmful 
packages that were automatically pulled into in-
ternal builds, compromising the entire software 
supply chain.

Conclusion
CI/CD pipelines enable rapid software delivery 

but present unique security challenges. By im-
plementing strong access controls, automating 
security testing, and using best practices to se-
cure dependencies and environment segregation, 
organizations can significantly reduce the risk of 
attacks. Proactive measures such as continuous 
monitoring, logging, and regular audits will help 
maintain the security integrity of the CI/CD pro-
cess as the threat landscape evolves.

Contact for more details

State Informatics Officer 
NIC, Tamil Nadu State Centre
E2-A, Rajaji Bhavan, Besant Nagar 
Chennai, Tamil Nadu - 600090 
Email: sio.tn@nic.in, Phone: 044-24917850 

BUILD REVIEW STAGING PRODUCTIONUNIT
TESTS

CI PIPELINE CD PIPELINE

INTEGRATION
TESTS

CODE

COMMIT

RELATED CODE

Insufficient Flow
Mechanisms

Navigating The CI/CD Minefield

Inadequate Identity and 
Access Management

Dependency 
Chain Abuse

Insufficient 
PBAC

Explosives that cloud blow your pipeline

Poisoned Pipeline 
Execution


	40_41_tup_SecCICD_oct_24_withoutcut

