
informatics.nic.in January 202534

Applications expose resources
to targeted users and
potential attackers. A secured
architecture is the foundation
of any application’s defence
against cyber threats. It
provides a proactive and
strategic defence, anticipating
and mitigating potential
risks before they manifest. It
ensures a robust framework for
protecting sensitive data and
maintaining the integrity of the
application as a whole.

In today’s hyper-connected world, cybersecurity
is essential in application architecture. As
businesses grow reliant on digital platforms,

securing applications from cyber threats is
critical for protecting data, maintaining trust,
and ensuring business continuity. Cybersecurity
in application architecture involves safeguarding
hardware, software, and data from unauthorized
access, breaches, and attacks. Without proper
security, hackers can exploit vulnerabilities,
steal data, or disrupt services. Cyberattacks
can result in financial loss, legal repercussions,
and reputational damage. Securing application
architecture helps prevent these risks, ensuring
systems remain resilient against emerging
threats.

Secure System Development
Life-Cycle (SSDLC)

To effectively secure applications, organiza-
tions must adopt a proactive approach, starting
from the very beginning of development. Inte-
grating security into every phase of the Software
Development Life Cycle (SDLC) is the primary
step to ensure security of applications. Instead
of treating security as an afterthought, it should
be embedded in design, development, testing,
and deployment.

• Early Security Integration: Address security
concerns from the design stage to identify risks
and vulnerabilities before development begins.

• Static / Dynamic Application Security Testing:
Use SAST and DAST tools to detect and fix vulner-
abilities in code and applications.

• Threat Modelling: Conduct early threat
modelling to anticipate security risks.

• Security Training for Developers: Train devel-
opers and stakeholders in secure coding and
keep them updated on vulnerabilities like the
OWASP Top Ten.

Building Secure
Applications
Cybersecurity Best Practices for
Modern Architecture

tion mechanisms ensure sensitive data remains
protected. Some of the tools and technologies
that can be employed for this purpose are:

• Multi-Factor Authentication (MFA): Strengthen
authentication with multiple forms of identity
verification like DSC, OTP (Time-Based One-Time
Password), FIDO2, Tokens, or app-based authen-
ticators.

• Password Policies: Enforce long and strong
passwords, with minimum 12 characters including
special characters, numbers, and case variations.

• Secure Session Management: Implement se-
cure session handling, automatic timeouts, and
safe password reset mechanisms.

• Password Communication: Any change in pass-
word should be intimated to the user by SMS.

Proper Security Configuration
Security configuration is the process of setting

up security controls and parameters for comput-
er systems, networks, or software applications to
reduce security risks. Proper security configura-
tion is the key to security of any enterprise appli-
cation. Incomplete and incorrect configurations
can leave applications vulnerable, resulting in
unauthorized access and exploitation.

• Remove Default Settings: Replace default cre-
dentials and configurations with secure alterna-
tives.

• Custom Error Pages: Use custom error pages to
obscure technical details.

• Limited Privilege: Provide only the required
access to the users over the folders, databases
and other resources.

Regular Patching and Vulnerability
Management

Use of outdated software components in ap-
plications makes the application susceptible
to cyber-attacks as the miscreants exploit the
known vulnerabilities in these components. Reg-
ular and continuous patching to keep the compo-
nents up-to-date reduces the risk of an applica-
tion falling victim to attacks.

• Patch Updates: Apply security patches and up-
dates regularly to frameworks and software.

• Vulnerability Scanning: Continuously scan ap-
plications for vulnerabilities.

Role-Based Access Control (RBAC)
Role-based access control is a method for

managing user access to systems and resourc-
es based on a user’s role or job function. RBAC
allows IT administrators to assign roles to users
with the appropriate permissions so that they
are allowed access only to the information they
need to know or perform their job duties. Access
control is essential to protect sensitive parts of
an application.

• Limit Access by Role: Implement RBAC to en-
sure users only access necessary data.

• Backend and Frontend Enforcement: Apply ac-
cess controls at both user interface and backend
levels.

• API Restrictions: Block unauthorized API ac-
cess using reliable gateways.

Secure Authentication
Authentication confirms that only the right

people with the right permissions can get access
to the applications and data. Proper authentica-

Technology Update

B. Kalaimani
Scientist-D
kmani@nic.in

Edited by C.J. ANTONY

informatics.nic.inJanuary 2025 35

Technology Update

• Monitor Alerts: Stay informed about vulnera-
bilities and patch them promptly.

Secure Communication Protocols
Secure communication protocols are rules and

procedures that ensure that data transmission
across a network is secure. A secure connection
is one that uses encryption protocols to protect
the data being transferred. Secured connections
protect data from man-in-the-middle attacks,
and ensures the data has not been tampered
with during transit.

• Enforce HTTPS: Encrypt data between clients
and servers using strong SSL/TLS configurations.

• Disable Insecure Protocols: Turn off outdated
protocols like SSLv3.

Logging, Monitoring, and Incident
Response

Logging, monitoring, and incident response
are the three important activities for detecting
and responding to security incidents. Log mon-
itoring is essential for incident response as it
enables organizations to detect and analyze se-
curity incidents, system failures, and operational
issues. Hence, these activities should be envis-
aged while architecting the application itself.

• Comprehensive Logging: Record security-re-
lated events such as access attempts and system
errors.

• Log Security: Ensure logs are securely stored
and access is restricted to authorized personnel.

• Incident Response Plan: Develop formal pro-
cedures for handling security incidents.

DevSecOps Integration
DevSecOps is a framework that integrates

security into every stage of the software devel-
opment lifecycle. It stands for development, se-
curity, and operations. Each term defines differ-
ent roles and responsibilities of software teams
when they are building software applications.
Integrating security into the DevOps process en-
sures continuous protection.

• Security as Code: Use tools like SonarQube
and OWASP Dependency-Check in the CI/CD
pipeline.

• Container Security: Secure containerized ap-
plications by using minimal base images and
performing regular scans.

Database Security
Database security is crucial for protecting

sensitive data from accidental and intention-
al threats. Data being the new oil, modern day
hackers focus on data exfiltration or encryption
through some ransomware. Compliance to legal
frameworks like data protection laws also neces-
sitates secure database management.

• Use Stored Procedures: Implement stored
procedures and parameterized queries for data-
base interactions instead of direct SQL queries.

• Limited access to Data: Access Privilege may
be need to know basis, like Read Only access for
Reports and Dashboard.

• Secure file names and folders: Do not keep
files in directly accessible directories to prevent
unauthorized access through the web server.
Generate unique filenames using Global Unique
Identifier (GUID) to prevent guessing and over-
writing files.

• Encryption at Rest: Encrypt data using strong
Keys to protect sensitive information stored in
the database. Consider field level encryption for

highly sensitive data like credit card information.
Implement a secure key management system to
handle encryption keys.

API Security
APIs (Application Programming Interface) are

the communication channels between software
systems. Protecting APIs from attacks deserves
attention while architecting the application. API
security is important because it protects sensi-
tive data and prevents unauthorized access to
APIs.

• Strong Authentication and Authorization: Im-
plement robust authentication mechanisms to
ensure that only authorized users and applica-
tions can access API. Enforce role-based access
control (RBAC) to limit user permissions based on
their roles.

• Encryption in Transit: Use appropriate proto-
cols, like TLS (Transport Layer Security), to en-
crypt data being transmitted between the client
and the server, as well as between different data-
base components.

Conclusion
Implementing cybersecurity best practices is

crucial for protecting systems, data, and users
from evolving threats. By securing all stages of
development, from design to deployment, or-
ganizations can prevent vulnerabilities, reduce
the risk of attacks, and maintain compliance. Or-
ganisations may also formulate a Cyber Security
Policy that govern how the information systems,
data, and resources are protected from internal
and external threats. The policy may be reviewed
periodically for maintaining an effective cyberse-
curity strategy to ensure that the policies remain
relevant, up-to-date, and aligned with evolving
threats, technologies, and compliance regula-
tions. These practices foster trust, reliability, and
resilience in today’s digital world.

Contact for more details

State Informatics Officer
NIC, Tamil Nadu State Centre
E2-A, Rajaji Bhavan, Besant Nagar, Chennai-600090
Email: sio.tn@nic.in, Phone: 044-24466495

Secure Lifecycle
• Threat Modelling
• Secure Coding Practices

Role-Based Access
• Define User Roles
• Resources-Roles Based

Secure Authentication
• Multi-factor Authentication
• Secure Passwords

Database Security
• Secure File Storage
• Encrypt Sensitive Data

API Security
• Strong Authentication &
• Authorization

Logging and Monitoring
• Proper Logging
• Incident Detection

Secure Communication
• Enable SSL/TLS
• Strong Firewall Rules

Patch & Vulnerability Fix
• Periodic Updates
• Awareness & Training

Security Configuration
• Remove Default Settings
• Customize Error Pages

DevSecOps Integration
• White list inputs
• Range Values

SECURE
ARCHITECTURE

Fig 10.1 Benefits of Secure Architecture

Traditional Security
Approach

Modern Security Approach

Firewalls & VPNs Zero Trust & Micro-Segmentatio

Basic Authentication Multi-Factor & Passwordless
Authentication

Patch Management Continuous Security Monitoring &
AI-driven Threat Intelligence

Perimeter-Based
Security

Identity-Centric & Context-Aware
Security

Manual Security Checks Automated Security Testing &
DevSecOps

Centralized Data Access Role-Based & Least Privilege Access
Control

